|
Full Scoreboard »» |
|
Full Scoreboard »» |
San Diego Gulls 13-4-2, 28pts · 2nd in Western |
Player | # | POS | CON | CK | FG | DI | SK | ST | EN | DU | PH | FO | PA | SC | DF | PS | EX | LD | PO | MO | OV | AGE | CONTRACT | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Drew O'Connor | 0 | LW | 97.00 | 63 | 33 | 91 | 66 | 81 | 82 | 90 | 65 | 60 | 64 | 68 | 76 | 66 | 69 | 68 | 0 | 52 | 77 | 26 | 925,000$/1yrs | |||
Jimmy Vesey | 16 | LW/RW | 98.00 | 69 | 39 | 91 | 64 | 82 | 77 | 90 | 62 | 58 | 62 | 64 | 72 | 63 | 78 | 77 | 0 | 55 | 75 | 31 | 925,000$/1yrs | |||
Colin Blackwell | 0 | C/RW | 100.00 | 68 | 32 | 91 | 61 | 71 | 80 | 79 | 62 | 61 | 58 | 67 | 75 | 64 | 78 | 77 | 0 | 55 | 75 | 31 | 850,000$/2yrs | |||
Thomas Bordeleau | 0 | C | 99.00 | 60 | 32 | 77 | 68 | 67 | 81 | 74 | 66 | 78 | 63 | 69 | 63 | 68 | 62 | 60 | 0 | 55 | 75 | 22 | 950,000$/2yrs | |||
Elmer Soderblom (R) | 0 | C/RW | 100.00 | 68 | 35 | 86 | 63 | 99 | 75 | 68 | 65 | 58 | 60 | 70 | 60 | 68 | 63 | 62 | 0 | 55 | 74 | 23 | 878,333$/1yrs | |||
Jakub Rychlovsky | 0 | LW | 100.00 | 68 | 38 | 83 | 63 | 68 | 72 | 90 | 63 | 47 | 62 | 71 | 64 | 66 | 61 | 60 | 0 | 55 | 74 | 23 | 870,000$/2yrs | |||
Justin Dowling | 36 | C/LW/RW | 100.00 | 62 | 38 | 88 | 55 | 69 | 71 | 84 | 70 | 76 | 62 | 56 | 74 | 59 | 81 | 79 | 0 | 55 | 73 | 34 | 775,000$/1yrs | |||
Scott Sabourin | 0 | RW | 100.00 | 99 | 49 | 50 | 53 | 84 | 68 | 84 | 68 | 45 | 53 | 60 | 72 | 56 | 77 | 72 | 0 | 55 | 72 | 32 | 775,000$/1yrs | |||
Pat Maroon | 0 | LW/RW | 100.00 | 71 | 64 | 60 | 57 | 92 | 77 | 81 | 61 | 59 | 65 | 59 | 57 | 60 | 86 | 82 | 0 | 58 | 72 | 36 | 1,000,000$/1yrs | |||
Chris Tierney | 71 | C/LW | 100.00 | 59 | 35 | 89 | 59 | 76 | 72 | 79 | 58 | 77 | 62 | 59 | 64 | 59 | 75 | 74 | 0 | 55 | 71 | 30 | 1,250,000$/1yrs | |||
Connor Brown | 0 | RW | 100.00 | 61 | 32 | 95 | 55 | 71 | 77 | 77 | 56 | 60 | 58 | 57 | 73 | 56 | 76 | 76 | 0 | 55 | 70 | 30 | 1,100,000$/1yrs | |||
Akil Thomas (R) | 0 | C | 100.00 | 68 | 38 | 79 | 60 | 71 | 67 | 77 | 62 | 66 | 56 | 63 | 64 | 60 | 63 | 61 | 0 | 55 | 70 | 23 | 950,000$/2yrs | |||
Ben Hutton | 0 | D | 96.00 | 60 | 37 | 88 | 55 | 81 | 82 | 76 | 57 | 30 | 62 | 59 | 61 | 58 | 77 | 76 | 0 | 51 | 72 | 31 | 950,000$/1yrs | |||
Spencer Stastney | 0 | D | 99.00 | 54 | 32 | 92 | 56 | 72 | 82 | 71 | 56 | 30 | 58 | 62 | 73 | 59 | 66 | 65 | 0 | 55 | 71 | 24 | 850,000$/2yrs | |||
Haydn Fleury | 0 | D | 99.00 | 70 | 33 | 78 | 55 | 85 | 79 | 73 | 52 | 30 | 58 | 53 | 59 | 53 | 71 | 69 | 0 | 55 | 69 | 28 | 775,000$/1yrs | |||
Uvis Balinskis | 0 | D | 100.00 | 68 | 33 | 89 | 55 | 76 | 79 | 69 | 51 | 30 | 57 | 56 | 57 | 53 | 71 | 70 | 0 | 55 | 69 | 28 | 850,000$/2yrs | |||
Ole Bjorgvik-Holm (R) | 0 | D | 100.00 | 62 | 39 | 91 | 56 | 79 | 62 | 60 | 53 | 30 | 50 | 42 | 61 | 54 | 59 | 60 | 0 | 55 | 65 | 22 | 825,000$/1yrs | |||
Patrik Koch | 0 | D | 100.00 | 86 | 42 | 50 | 47 | 75 | 61 | 76 | 45 | 30 | 52 | 46 | 69 | 49 | 69 | 64 | 0 | 49 | 65 | 27 | 775,000$/1yrs | |||
Scratches | ||||||||||||||||||||||||||
Max Sasson | 0 | C | 100.00 | 68 | 39 | 78 | 58 | 72 | 66 | 76 | 61 | 71 | 57 | 58 | 64 | 58 | 63 | 61 | 0 | 24 | 69 | 24 | 870,000$/1yrs | |||
Nikita Chibrikov (R) | 0 | LW | 100.00 | 77 | 40 | 63 | 64 | 66 | 69 | 71 | 60 | 44 | 56 | 55 | 60 | 63 | 58 | 54 | 0 | 21 | 68 | 21 | 875,833$/2yrs | |||
Waltteri Merela | 0 | RW | 100.00 | 73 | 33 | 92 | 55 | 84 | 72 | 68 | 53 | 30 | 50 | 57 | 60 | 55 | 68 | 67 | 0 | 21 | 67 | 26 | 775,000$/1yrs | |||
Antonio Stranges (R) | 0 | C/LW | 100.00 | 58 | 37 | 95 | 55 | 69 | 62 | 78 | 59 | 61 | 53 | 54 | 63 | 54 | 59 | 58 | 0 | 21 | 66 | 22 | 846,667$/1yrs | |||
Ty Glover | 0 | C | 100.00 | 64 | 39 | 85 | 50 | 81 | 60 | 80 | 62 | 71 | 48 | 50 | 65 | 49 | 62 | 61 | 0 | 21 | 65 | 24 | 859,167$/1yrs | |||
Ryder Rolston (R) | 0 | C | 100.00 | 56 | 38 | 97 | 52 | 76 | 61 | 76 | 61 | 63 | 49 | 52 | 64 | 51 | 61 | 60 | 0 | 21 | 65 | 23 | 895,000$/2yrs | |||
Stephen Halliday (R) | 0 | C | 100.00 | 59 | 39 | 92 | 52 | 86 | 60 | 67 | 60 | 61 | 56 | 45 | 63 | 51 | 59 | 58 | 0 | 21 | 65 | 22 | 775,000$/1yrs | |||
Jaxsen Wiebe | 0 | C | 100.00 | 75 | 41 | 66 | 50 | 82 | 59 | 69 | 60 | 66 | 46 | 51 | 63 | 49 | 59 | 55 | 0 | 21 | 64 | 22 | 852,500$/2yrs | |||
Antti Saarela (R) | 0 | C | 100.00 | 63 | 38 | 86 | 50 | 71 | 60 | 70 | 61 | 69 | 46 | 52 | 64 | 49 | 61 | 59 | 0 | 21 | 64 | 23 | 896,250$/1yrs | |||
Eetu Liukas (R) | 0 | LW | 100.00 | 69 | 40 | 75 | 49 | 79 | 58 | 73 | 60 | 44 | 47 | 48 | 63 | 48 | 59 | 56 | 0 | 21 | 63 | 22 | 867,500$/2yrs | |||
Nicolas Beaudin | 92 | D | 100.00 | 72 | 39 | 71 | 54 | 66 | 63 | 75 | 50 | 30 | 60 | 47 | 66 | 53 | 64 | 61 | 0 | 27 | 68 | 25 | 850,000$/1yrs | |||
Cole Krygier | 0 | D | 100.00 | 66 | 39 | 81 | 45 | 78 | 59 | 76 | 44 | 30 | 50 | 46 | 65 | 48 | 62 | 60 | 0 | 21 | 63 | 26 | 837,500$/1yrs | |||
Donovan Sebrango (R) | 0 | D | 100.00 | 78 | 41 | 62 | 44 | 77 | 59 | 78 | 44 | 30 | 49 | 47 | 63 | 48 | 59 | 55 | 0 | 21 | 62 | 22 | 828,333$/1yrs | |||
John Parker-Jones | 0 | RWD | 100.00 | 86 | 44 | 50 | 44 | 96 | 59 | 69 | 42 | 30 | 46 | 48 | 65 | 47 | 62 | 57 | 0 | 21 | 62 | 24 | 775,000$/1yrs | |||
David Spacek (R) | 0 | D | 100.00 | 62 | 38 | 88 | 44 | 69 | 58 | 76 | 44 | 30 | 49 | 47 | 62 | 48 | 57 | 56 | 0 | 21 | 61 | 21 | 862,500$/2yrs | |||
Leo Loof (R) | 0 | D | 100.00 | 64 | 39 | 84 | 44 | 72 | 57 | 75 | 43 | 30 | 49 | 45 | 63 | 47 | 59 | 57 | 0 | 21 | 61 | 22 | 867,500$/2yrs |
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
Goalie | # | CON | SK | DU | EN | SZ | AG | RB | SC | HS | RT | PH | PS | EX | LD | PO | MO | OV | AGE | CONTRACT |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Jakub Dobes | 0 | 100.00 | 75 | 79 | 72 | 82 | 68 | 75 | 75 | 75 | 75 | 75 | 75 | 62 | 63 | 0 | 47 | 78 | 23 | 925,000$/1yrs |
Matt Villalta | 0 | 100.00 | 75 | 61 | 65 | 70 | 55 | 60 | 60 | 75 | 60 | 74 | 60 | 66 | 69 | 0 | 33 | 70 | 25 | 800,000$/1yrs |
Scratches | ||||||||||||||||||||
Spencer Martin | 30 | 100.00 | 68 | 76 | 73 | 79 | 68 | 67 | 71 | 78 | 74 | 77 | 71 | 73 | 77 | 0 | 30 | 77 | 29 | 950,000$/2yrs |
Arvid Soderblom | 0 | 97.00 | 74 | 76 | 72 | 75 | 69 | 65 | 73 | 77 | 73 | 76 | 73 | 66 | 70 | 0 | 52 | 77 | 25 | 962,500$/1yrs |
Mitchell Gibson | 0 | 100.00 | 73 | 76 | 70 | 70 | 78 | 74 | 74 | 73 | 74 | 74 | 74 | 64 | 66 | 0 | 33 | 77 | 25 | 775,000$/1yrs |
Coaches Name | PH | DF | OF | PD | EX | LD | PO | CNT | Age | Contract | Salary |
---|---|---|---|---|---|---|---|---|---|---|---|
Joe Sacco | 66 | 73 | 65 | 64 | 79 | 74 | 70 | USA | 55 | 4 | 500,000$ |
General Manager |
---|
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
# | Player Name | Team Name | # | POS | GP | G | A | P | +/- | PIM | PIM5 | HIT | SHT | OSB | OSM | SHT% | SB | AMG | PPG | PPA | PPP | PPM | PKG | PKA | PKP | PKM | GW | GT | FO% | FOT | GA | TA | EG | HT | P/20 | PSG | PSS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Thomas Bordeleau | Gulls (ANA) | C | 19 | 12 | 17 | 29 | 6 | 6 | 0 | 26 | 90 | 25 | 64 | 13.33% | 2 | 19.81 | 3 | 6 | 9 | 47 | 0 | 0 | 0 | 0 | 2 | 1 | 57.00% | 500 | 0 | 0 | 0 | 1 | 1.54 | 0 | 2 | |
2 | Drew O'Connor | Gulls (ANA) | LW | 19 | 7 | 14 | 21 | 3 | 2 | 0 | 21 | 97 | 35 | 81 | 7.22% | 7 | 20.53 | 4 | 4 | 8 | 47 | 0 | 0 | 0 | 16 | 1 | 0 | 48.89% | 45 | 0 | 0 | 0 | 0 | 1.08 | 0 | 2 | |
3 | Colin Blackwell | Gulls (ANA) | C/RW | 19 | 9 | 11 | 20 | 9 | 8 | 0 | 33 | 90 | 33 | 75 | 10.00% | 4 | 19.74 | 0 | 2 | 2 | 38 | 0 | 0 | 0 | 0 | 3 | 0 | 51.72% | 116 | 0 | 0 | 0 | 0 | 1.07 | 0 | 1 | |
4 | Elmer Soderblom | Gulls (ANA) | C/RW | 19 | 7 | 10 | 17 | 5 | 4 | 0 | 28 | 59 | 15 | 51 | 11.86% | 5 | 17.74 | 2 | 3 | 5 | 49 | 0 | 0 | 0 | 0 | 0 | 0 | 54.55% | 33 | 0 | 0 | 0 | 0 | 1.01 | 0 | 2 | |
5 | Jimmy Vesey | Gulls (ANA) | LW/RW | 19 | 4 | 10 | 14 | 4 | 6 | 0 | 36 | 75 | 21 | 62 | 5.33% | 9 | 20.89 | 0 | 3 | 3 | 40 | 0 | 0 | 0 | 45 | 0 | 0 | 46.43% | 28 | 0 | 0 | 0 | 0 | 0.71 | 0 | 1 | |
6 | Jakub Rychlovsky | Gulls (ANA) | LW | 19 | 7 | 5 | 12 | -2 | 10 | 0 | 28 | 80 | 20 | 43 | 8.75% | 2 | 14.64 | 2 | 3 | 5 | 44 | 0 | 0 | 0 | 20 | 2 | 0 | 50.00% | 22 | 0 | 0 | 0 | 0 | 0.86 | 0 | 1 | |
7 | Justin Dowling | Gulls (ANA) | C/LW/RW | 19 | 2 | 9 | 11 | 5 | 4 | 0 | 17 | 54 | 19 | 53 | 3.70% | 10 | 18.45 | 0 | 1 | 1 | 2 | 0 | 0 | 0 | 44 | 0 | 0 | 57.72% | 473 | 0 | 0 | 0 | 0 | 0.63 | 0 | 0 | |
8 | Haydn Fleury | Gulls (ANA) | D | 19 | 3 | 7 | 10 | 10 | 16 | 0 | 37 | 21 | 5 | 21 | 14.29% | 19 | 23.11 | 2 | 2 | 4 | 41 | 0 | 0 | 0 | 36 | 1 | 0 | 0.00% | 0 | 0 | 0 | 0 | 0 | 0.46 | 0 | 0 | |
9 | Spencer Stastney | Gulls (ANA) | D | 19 | 3 | 7 | 10 | 6 | 6 | 0 | 25 | 44 | 12 | 22 | 6.82% | 25 | 23.30 | 2 | 2 | 4 | 49 | 0 | 0 | 0 | 34 | 1 | 0 | 0.00% | 0 | 0 | 0 | 0 | 0 | 0.45 | 0 | 0 | |
10 | Ben Hutton | Gulls (ANA) | D | 19 | 4 | 5 | 9 | 4 | 19 | 5 | 36 | 19 | 6 | 20 | 21.05% | 22 | 24.47 | 1 | 4 | 5 | 51 | 0 | 0 | 0 | 37 | 0 | 0 | 0.00% | 0 | 0 | 0 | 0 | 0 | 0.39 | 0 | 0 | |
11 | Akil Thomas | Gulls (ANA) | C | 19 | 3 | 6 | 9 | 7 | 0 | 0 | 2 | 20 | 10 | 31 | 15.00% | 1 | 8.28 | 0 | 1 | 1 | 3 | 0 | 0 | 0 | 24 | 2 | 1 | 54.30% | 186 | 0 | 0 | 0 | 0 | 1.14 | 1 | 1 | |
12 | Scott Sabourin | Gulls (ANA) | RW | 19 | 4 | 4 | 8 | 8 | 10 | 0 | 43 | 25 | 8 | 18 | 16.00% | 0 | 6.77 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 33.33% | 6 | 0 | 0 | 0 | 0 | 1.24 | 0 | 0 | |
13 | Pat Maroon | Gulls (ANA) | LW/RW | 19 | 2 | 4 | 6 | 7 | 5 | 5 | 4 | 19 | 5 | 20 | 10.53% | 2 | 6.76 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 75.00% | 8 | 0 | 0 | 0 | 0 | 0.93 | 1 | 1 | |
14 | Chris Tierney | Gulls (ANA) | C/LW | 19 | 1 | 4 | 5 | 0 | 0 | 0 | 6 | 29 | 8 | 21 | 3.45% | 2 | 11.75 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 9 | 0 | 0 | 58.70% | 276 | 0 | 0 | 0 | 0 | 0.45 | 0 | 0 | |
15 | Connor Brown | Gulls (ANA) | RW | 19 | 1 | 4 | 5 | 0 | 0 | 0 | 9 | 38 | 8 | 29 | 2.63% | 0 | 11.09 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 45.45% | 11 | 0 | 0 | 0 | 0 | 0.47 | 0 | 0 | |
16 | Uvis Balinskis | Gulls (ANA) | D | 19 | 1 | 4 | 5 | 13 | 6 | 0 | 21 | 9 | 4 | 8 | 11.11% | 12 | 20.75 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 34 | 0 | 0 | 0.00% | 0 | 0 | 0 | 0 | 0 | 0.25 | 0 | 0 | |
17 | Ole Bjorgvik-Holm | Gulls (ANA) | D | 19 | 1 | 3 | 4 | 0 | 0 | 0 | 4 | 13 | 8 | 9 | 7.69% | 8 | 15.29 | 1 | 1 | 2 | 35 | 0 | 0 | 0 | 12 | 0 | 0 | 0.00% | 0 | 0 | 0 | 0 | 0 | 0.28 | 0 | 0 | |
18 | Nicolas Beaudin | Gulls (ANA) | D | 4 | 0 | 2 | 2 | 1 | 4 | 0 | 4 | 4 | 0 | 3 | 0.00% | 6 | 17.55 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 6 | 0 | 0 | 0.00% | 0 | 0 | 0 | 0 | 0 | 0.57 | 0 | 0 | |
19 | Max Sasson | Gulls (ANA) | C | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00% | 0 | 0.00 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00% | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0 | |
20 | Patrik Koch | Gulls (ANA) | D | 15 | 0 | 0 | 0 | 1 | 10 | 0 | 38 | 5 | 2 | 3 | 0.00% | 10 | 12.76 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0.00% | 0 | 0 | 0 | 0 | 0 | 0.00 | 0 | 0 | |
Team Total or Average | 343 | 71 | 126 | 197 | 87 | 116 | 10 | 418 | 791 | 244 | 634 | 8.98% | 146 | 16.46 | 17 | 32 | 49 | 479 | 0 | 0 | 0 | 326 | 12 | 3 | 56.22% | 1704 | 0 | 0 | 0 | 1 | 0.70 | 2 | 11 |
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
# | Goalie Name | Team Name | GP | W | L | OTL | PCT | GAA | MP | PIM | SO | GA | SA | SAR | A | EG | PS % | PSA | ST | BG | S1 | S2 | S3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Arvid Soderblom | Gulls (ANA) | 9 | 6 | 2 | 1 | 0.925 | 2.14 | 533 | 0 | 0 | 19 | 254 | 0 | 0 | 0 | 0.000 | 0 | 8 | 6 | 1 | 0 | 0 |
2 | Jakub Dobes | Gulls (ANA) | 10 | 6 | 0 | 1 | 0.898 | 2.57 | 513 | 2 | 1 | 22 | 215 | 0 | 1 | 0 | 0.500 | 2 | 9 | 9 | 1 | 1 | 0 |
3 | Spencer Martin | Gulls (ANA) | 3 | 1 | 2 | 0 | 0.816 | 5.00 | 108 | 0 | 0 | 9 | 49 | 0 | 0 | 0 | 0.875 | 8 | 2 | 2 | 0 | 0 | 0 |
Team Total or Average | 22 | 13 | 4 | 2 | 0.903 | 2.60 | 1155 | 2 | 1 | 50 | 518 | 0 | 1 | 0 | 0.800 | 10 | 19 | 17 | 2 | 1 | 0 |
Player Name | POS | Age | Cap Hit | 2020-21 | 2021-22 | 2022-23 | 2023-24 | 2024-25 | 2025-26 | 2026-27 | 2027-28 |
---|---|---|---|---|---|---|---|---|---|---|---|
Akil Thomas | C | 23 | 950,000$ | 950,000$ | 950,000$ | RFA | |||||
Antonio Stranges | C/LW | 22 | 846,667$ | 846,667$ | RFA | ||||||
Antti Saarela | C | 23 | 896,250$ | 896,250$ | RFA | ||||||
Arvid Soderblom | G | 25 | 962,500$ | 962,500$ | RFA | ||||||
Ben Hutton | D | 31 | 950,000$ | 950,000$ | UFA | ||||||
Chris Tierney | C/LW | 30 | 1,250,000$ | 1,250,000$ | UFA | ||||||
Cole Krygier | D | 26 | 837,500$ | 837,500$ | RFA | ||||||
Colin Blackwell | C/RW | 31 | 850,000$ | 850,000$ | 850,000$ | UFA | |||||
Connor Brown | RW | 30 | 1,100,000$ | 1,100,000$ | UFA | ||||||
David Spacek | D | 21 | 862,500$ | 862,500$ | 862,500$ | RFA | |||||
Donovan Sebrango | D | 22 | 828,333$ | 828,333$ | RFA | ||||||
Drew O'Connor | LW | 26 | 925,000$ | 925,000$ | RFA | ||||||
Eetu Liukas | LW | 22 | 867,500$ | 867,500$ | 867,500$ | RFA | |||||
Elmer Soderblom | C/RW | 23 | 878,333$ | 878,333$ | RFA | ||||||
Haydn Fleury | D | 28 | 775,000$ | 775,000$ | UFA | ||||||
Jakub Dobes | G | 23 | 925,000$ | 925,000$ | RFA | ||||||
Jakub Rychlovsky | LW | 23 | 870,000$ | 870,000$ | 870,000$ | RFA | |||||
Jaxsen Wiebe | C | 22 | 852,500$ | 852,500$ | 852,500$ | RFA | |||||
Jimmy Vesey | LW/RW | 31 | 925,000$ | 925,000$ | UFA | ||||||
John Parker-Jones | RW/D | 24 | 775,000$ | 775,000$ | RFA | ||||||
Justin Dowling | C/LW/RW | 34 | 775,000$ | 775,000$ | UFA | ||||||
Leo Loof | D | 22 | 867,500$ | 867,500$ | 867,500$ | RFA | |||||
Matt Villalta | G | 25 | 800,000$ | 800,000$ | RFA | ||||||
Max Sasson | C | 24 | 870,000$ | 870,000$ | RFA | ||||||
Mitchell Gibson | G | 25 | 775,000$ | 775,000$ | RFA | ||||||
Nicolas Beaudin | D | 25 | 850,000$ | 850,000$ | RFA | ||||||
Nikita Chibrikov | LW | 21 | 875,833$ | 875,833$ | 875,833$ | RFA | |||||
Ole Bjorgvik-Holm | D | 22 | 825,000$ | 825,000$ | RFA | ||||||
Pat Maroon | LW/RW | 36 | 1,000,000$ | 1,000,000$ | UFA | ||||||
Patrik Koch | D | 27 | 775,000$ | 775,000$ | UFA | ||||||
Ryder Rolston | C | 23 | 895,000$ | 895,000$ | 895,000$ | RFA | |||||
Scott Sabourin | RW | 32 | 775,000$ | 775,000$ | UFA | ||||||
Spencer Martin | G | 29 | 950,000$ | 950,000$ | 950,000$ | UFA | |||||
Spencer Stastney | D | 24 | 850,000$ | 850,000$ | 850,000$ | RFA | |||||
Stephen Halliday | C | 22 | 775,000$ | 775,000$ | RFA | ||||||
Thomas Bordeleau | C | 22 | 950,000$ | 950,000$ | 950,000$ | RFA | |||||
Ty Glover | C | 24 | 859,167$ | 859,167$ | RFA | ||||||
Uvis Balinskis | D | 28 | 850,000$ | 850,000$ | 850,000$ | UFA | |||||
Waltteri Merela | RW | 26 | 775,000$ | 775,000$ | RFA |
Forward Lines | |||||||
---|---|---|---|---|---|---|---|
|
|
| |||||
|
|
| |||||
|
|
| |||||
|
|
|
Defensive Pairings | |||||||
---|---|---|---|---|---|---|---|
|
| ||||||
|
| ||||||
|
|
1st Power Play Unit | |||||||
---|---|---|---|---|---|---|---|
|
|
| |||||
|
|
2nd Power Play Unit | |||||||
---|---|---|---|---|---|---|---|
|
|
| |||||
|
|
Goalies | |||||||
---|---|---|---|---|---|---|---|
|
|
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
# | VS Team | GP | W | L | T | OTW | OTL | SOW | SOL | GF | GA | Diff | P | PCT | G | A | TP | SO | EG | GP1 | GP2 | GP3 | GP4 | SHF | SH1 | SP2 | SP3 | SP4 | SHA | SHB | Pim | Hit | PPA | PPG | PP% | PKA | PK GA | PK% | PK GF | W OF FO | T OF FO | OF FO% | W DF FO | T DF FO | DF FO% | W NT FO | T NT FO | NT FO% | PZ DF | PZ OF | PZ NT | PC DF | PC OF | PC NT | GF% | SH% | SV% | PDO | PDOBRK |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Wranglers | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 9 | 6 | 3 | 4 | 1.000 | 9 | 15 | 24 | 0 | 0 | 25 | 25 | 20 | 3 | 89 | 273 | 250 | 248 | 31 | 63 | 19 | 17 | 49 | 9 | 3 | 33.33% | 6 | 1 | 83.33% | 0 | 441 | 763 | 57.80% | 320 | 580 | 55.17% | 197 | 331 | 59.52% | 479 | 331 | 416 | 142 | 259 | 131 | 54.5% | 10.1% | 90.5% | 100.6 | FUN |
2 | Islanders | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 5 | 2 | 3 | 2 | 1.000 | 5 | 10 | 15 | 0 | 0 | 25 | 25 | 20 | 3 | 41 | 273 | 250 | 248 | 31 | 22 | 5 | 4 | 24 | 4 | 0 | 0.00% | 2 | 0 | 100.00% | 0 | 441 | 763 | 57.80% | 320 | 580 | 55.17% | 197 | 331 | 59.52% | 479 | 331 | 416 | 142 | 259 | 131 | 71.4% | 12.2% | 90.9% | 103.1 | FUN |
3 | Wolves | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | -1 | 0 | 0.000 | 2 | 3 | 5 | 0 | 0 | 25 | 25 | 20 | 3 | 35 | 273 | 250 | 248 | 31 | 34 | 10 | 10 | 16 | 5 | 1 | 20.00% | 4 | 2 | 50.00% | 0 | 441 | 763 | 57.80% | 320 | 580 | 55.17% | 197 | 331 | 59.52% | 479 | 331 | 416 | 142 | 259 | 131 | 50.0% | 5.7% | 91.2% | 96.9 | DULL |
4 | Wolf Pack | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 5 | -4 | 0 | 0.000 | 1 | 2 | 3 | 0 | 0 | 25 | 25 | 20 | 3 | 30 | 273 | 250 | 248 | 31 | 36 | 8 | 4 | 30 | 2 | 0 | 0.00% | 2 | 2 | 0.00% | 0 | 441 | 763 | 57.80% | 320 | 580 | 55.17% | 197 | 331 | 59.52% | 479 | 331 | 416 | 142 | 259 | 131 | 25.0% | 3.3% | 86.1% | 89.4 | Unlucky |
5 | Rocket | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 4 | -1 | 1 | 0.500 | 3 | 5 | 8 | 0 | 0 | 25 | 25 | 20 | 3 | 48 | 273 | 250 | 248 | 31 | 22 | 7 | 14 | 23 | 5 | 2 | 40.00% | 7 | 1 | 85.71% | 0 | 441 | 763 | 57.80% | 320 | 580 | 55.17% | 197 | 331 | 59.52% | 479 | 331 | 416 | 142 | 259 | 131 | 25.0% | 6.3% | 81.8% | 88.1 | Unlucky |
6 | Bears | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 5 | 8 | -3 | 0 | 0.000 | 5 | 10 | 15 | 0 | 0 | 25 | 25 | 20 | 3 | 33 | 273 | 250 | 248 | 31 | 34 | 4 | 6 | 26 | 3 | 1 | 33.33% | 3 | 3 | 0.00% | 0 | 441 | 763 | 57.80% | 320 | 580 | 55.17% | 197 | 331 | 59.52% | 479 | 331 | 416 | 142 | 259 | 131 | 44.4% | 15.2% | 76.5% | 91.6 | FUN |
7 | Canucks | 5 | 4 | 0 | 0 | 0 | 0 | 1 | 0 | 22 | 5 | 17 | 10 | 1.000 | 22 | 36 | 58 | 0 | 1 | 25 | 25 | 20 | 3 | 205 | 273 | 250 | 248 | 31 | 121 | 42 | 33 | 121 | 15 | 3 | 20.00% | 14 | 1 | 92.86% | 0 | 441 | 763 | 57.80% | 320 | 580 | 55.17% | 197 | 331 | 59.52% | 479 | 331 | 416 | 142 | 259 | 131 | 82.6% | 10.7% | 95.9% | 106.6 | LUCKY |
8 | Condors | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 1 | 3 | 2 | 1.000 | 4 | 7 | 11 | 0 | 0 | 25 | 25 | 20 | 3 | 50 | 273 | 250 | 248 | 31 | 20 | 7 | 2 | 12 | 3 | 2 | 66.67% | 1 | 1 | 0.00% | 0 | 441 | 763 | 57.80% | 320 | 580 | 55.17% | 197 | 331 | 59.52% | 479 | 331 | 416 | 142 | 259 | 131 | 100.0% | 8.0% | 95.0% | 103.0 | DULL |
9 | IceHogs | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 6 | -5 | 0 | 0.000 | 1 | 2 | 3 | 0 | 0 | 25 | 25 | 20 | 3 | 40 | 273 | 250 | 248 | 31 | 29 | 11 | 8 | 25 | 5 | 1 | 20.00% | 3 | 1 | 66.67% | 0 | 441 | 763 | 57.80% | 320 | 580 | 55.17% | 197 | 331 | 59.52% | 479 | 331 | 416 | 142 | 259 | 131 | 0.0% | 2.5% | 79.3% | 81.8 | Unlucky |
10 | Barracuda | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 1 | 2 | 2 | 1.000 | 3 | 6 | 9 | 0 | 0 | 25 | 25 | 20 | 3 | 47 | 273 | 250 | 248 | 31 | 20 | 3 | 2 | 21 | 2 | 0 | 0.00% | 1 | 0 | 100.00% | 0 | 441 | 763 | 57.80% | 320 | 580 | 55.17% | 197 | 331 | 59.52% | 479 | 331 | 416 | 142 | 259 | 131 | 75.0% | 6.4% | 95.0% | 101.4 | DULL |
11 | Silver Knights | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 10 | 3 | 7 | 4 | 1.000 | 10 | 19 | 29 | 0 | 0 | 25 | 25 | 20 | 3 | 91 | 273 | 250 | 248 | 31 | 52 | 13 | 12 | 31 | 6 | 3 | 50.00% | 6 | 1 | 83.33% | 0 | 441 | 763 | 57.80% | 320 | 580 | 55.17% | 197 | 331 | 59.52% | 479 | 331 | 416 | 142 | 259 | 131 | 77.8% | 11.0% | 94.2% | 105.2 | LUCKY |
12 | Firebirds | 2 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 7 | 7 | 0 | 3 | 0.750 | 7 | 12 | 19 | 0 | 0 | 25 | 25 | 20 | 3 | 82 | 273 | 250 | 248 | 31 | 65 | 17 | 6 | 40 | 3 | 1 | 33.33% | 3 | 0 | 100.00% | 0 | 441 | 763 | 57.80% | 320 | 580 | 55.17% | 197 | 331 | 59.52% | 479 | 331 | 416 | 142 | 259 | 131 | 46.2% | 8.5% | 89.2% | 97.8 | Unlucky |
_Vs Division | 13 | 9 | 0 | 0 | 1 | 0 | 1 | 0 | 55 | 23 | 32 | 22 | 0.846 | 55 | 95 | 150 | 0 | 1 | 25 | 25 | 20 | 3 | 564 | 273 | 250 | 248 | 31 | 341 | 101 | 72 | 274 | 38 | 12 | 31.58% | 31 | 4 | 87.10% | 0 | 441 | 763 | 57.80% | 320 | 580 | 55.17% | 197 | 331 | 59.52% | 479 | 331 | 416 | 142 | 259 | 131 | 69.4% | 9.8% | 93.3% | 103.0 | LUCKY | |
_Vs Conference | 15 | 10 | 2 | 0 | 1 | 1 | 1 | 0 | 58 | 32 | 26 | 25 | 0.833 | 58 | 100 | 158 | 0 | 1 | 25 | 25 | 20 | 3 | 639 | 273 | 250 | 248 | 31 | 404 | 122 | 90 | 315 | 48 | 14 | 29.17% | 38 | 7 | 81.58% | 0 | 441 | 763 | 57.80% | 320 | 580 | 55.17% | 197 | 331 | 59.52% | 479 | 331 | 416 | 142 | 259 | 131 | 63.8% | 9.1% | 92.1% | 101.2 | LUCKY | |
_Since Last GM Reset | 19 | 11 | 4 | 0 | 1 | 1 | 1 | 1 | 72 | 51 | 21 | 28 | 0.737 | 72 | 127 | 199 | 0 | 1 | 25 | 25 | 20 | 3 | 791 | 273 | 250 | 248 | 31 | 518 | 146 | 118 | 418 | 62 | 17 | 27.42% | 52 | 13 | 75.00% | 0 | 441 | 763 | 57.80% | 320 | 580 | 55.17% | 197 | 331 | 59.52% | 479 | 331 | 416 | 142 | 259 | 131 | 59.1% | 9.1% | 90.2% | 99.3 | FUN | |
Total | 19 | 11 | 4 | 0 | 1 | 1 | 1 | 1 | 72 | 51 | 21 | 28 | 0.737 | 72 | 127 | 199 | 0 | 1 | 25 | 25 | 20 | 3 | 791 | 273 | 250 | 248 | 31 | 518 | 146 | 118 | 418 | 62 | 17 | 27.42% | 52 | 13 | 75.00% | 0 | 441 | 763 | 57.80% | 320 | 580 | 55.17% | 197 | 331 | 59.52% | 479 | 331 | 416 | 142 | 259 | 131 | 59.1% | 9.1% | 90.2% | 99.3 | FUN |
Puck Time | |
---|---|
Offensive Zone | 25 |
Neutral Zone | 13 |
Defensive Zone | 21 |
Puck Time | |
---|---|
Offensive Zone Start | 763 |
Neutral Zone Start | 331 |
Defensive Zone Start | 580 |
Puck Time | |
---|---|
With Puck | 31 |
Without Puck | 28 |
Faceoffs | |
---|---|
Faceoffs Won | 958 |
Faceoffs Lost | 716 |
Team Average Shots after | League Average Shots after | |
---|---|---|
1st Period | 14.4 | 9.57 |
2nd Period | 27.5 | 20.31 |
3rd Period | 40.6 | 30.68 |
Overtime | 42.2 | 31.4 |
Goals in | Team Average Goals after | League Average Goals after |
---|---|---|
1st Period | 1.3 | 0.64 |
2nd Period | 2.6 | 1.65 |
3rd Period | 3.7 | 2.67 |
Overtime | 3.8 | 2.83 |
Even Strenght Goal | 55 |
---|---|
PP Goal | 17 |
PK Goal | 0 |
Empty Net Goal | 0 |
Home | Away | |
---|---|---|
Win | 7 | 6 |
Lost | 3 | 1 |
Overtime Lost | 0 | 2 |
PP Attempt | 62 |
---|---|
PP Goal | 17 |
PK Attempt | 52 |
PK Goal Against | 13 |
Home | |
---|---|
Shots For | 41.6 |
Shots Against | 27.3 |
Goals For | 3.8 |
Goals Against | 2.7 |
Hits | 22.0 |
Shots Blocked | 7.7 |
Pim | 6.2 |
Date | Matchup | Result | Detail | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2024-10-07 | Bears | @ | Gulls | Bears8,Gulls5 | RECAP | |||||||||
2024-10-10 | Gulls | @ | IceHogs | Gulls1,IceHogs6 | RECAP | |||||||||
2024-10-12 | Canucks | @ | Gulls | Canucks2,Gulls3 (SO) | RECAP | |||||||||
2024-10-13 | Gulls | @ | Barracuda | Gulls3,Barracuda1 | RECAP | |||||||||
2024-10-16 | Gulls | @ | Condors | Gulls4,Condors1 | RECAP | |||||||||
2024-10-18 | Canucks | @ | Gulls | Canucks0,Gulls3 | RECAP | |||||||||
2024-10-23 | Canucks | @ | Gulls | Canucks1,Gulls6 | RECAP | |||||||||
2024-10-27 | Wranglers | @ | Gulls | Wranglers1,Gulls3 | RECAP | |||||||||
2024-10-28 | Gulls | @ | Wranglers | Gulls6,Wranglers5 (OT) | RECAP | |||||||||
2024-10-31 | Silver Knights | @ | Gulls | Silver Knights2,Gulls4 | RECAP | |||||||||
2024-11-02 | Gulls | @ | Canucks | Gulls4,Canucks1 | RECAP | |||||||||
2024-11-03 | Canucks | @ | Gulls | Canucks1,Gulls6 | RECAP | |||||||||
2024-11-06 | Gulls | @ | Silver Knights | Gulls6,Silver Knights1 | RECAP | |||||||||
2024-11-08 | Firebirds | @ | Gulls | Firebirds3,Gulls4 | RECAP | |||||||||
2024-11-12 | Gulls | @ | Rocket | Gulls3,Rocket4 (SO) | RECAP | |||||||||
2024-11-13 | Wolves | @ | Gulls | Wolves3,Gulls2 | RECAP | |||||||||
2024-11-15 | Gulls | @ | Firebirds | Gulls3,Firebirds4 (OT) | RECAP | |||||||||
2024-11-17 | Wolf Pack | @ | Gulls | Wolf Pack5,Gulls1 | RECAP | |||||||||
2024-11-19 | Gulls | @ | Islanders | Gulls5,Islanders2 | RECAP | |||||||||
2024-11-21 | Gulls | @ | Bruins | |||||||||||
2024-11-23 | Moose | @ | Gulls | |||||||||||
2024-11-25 | Griffins | @ | Gulls | |||||||||||
2024-11-26 | Gulls | @ | Condors | |||||||||||
2024-11-28 | Canucks | @ | Gulls | |||||||||||
2024-11-30 | Gulls | @ | Roadrunners | |||||||||||
2024-12-05 | Gulls | @ | Thunderbirds | |||||||||||
2024-12-07 | Condors | @ | Gulls | |||||||||||
2024-12-10 | Gulls | @ | Canucks | |||||||||||
2024-12-13 | Gulls | @ | Comets | |||||||||||
2024-12-14 | Condors | @ | Gulls | |||||||||||
2024-12-18 | Gulls | @ | Moose | |||||||||||
2024-12-21 | Stars | @ | Gulls | |||||||||||
2024-12-26 | Bruins | @ | Gulls | |||||||||||
2024-12-28 | Comets | @ | Gulls | |||||||||||
2024-12-29 | Gulls | @ | Eagles | |||||||||||
2025-01-02 | Eagles | @ | Gulls | |||||||||||
2025-01-04 | Gulls | @ | Wolves | |||||||||||
2025-01-06 | Gulls | @ | Islanders | |||||||||||
2025-01-08 | Gulls | @ | Admirals | |||||||||||
2025-01-09 | Barracuda | @ | Gulls | |||||||||||
2025-01-12 | Gulls | @ | Reign | |||||||||||
2025-01-13 | Americans | @ | Gulls | |||||||||||
2025-01-17 | Gulls | @ | Crunch | |||||||||||
2025-01-22 | Wranglers | @ | Gulls | |||||||||||
2025-01-24 | Gulls | @ | Silver Knights | |||||||||||
2025-01-25 | Bears | @ | Gulls | |||||||||||
2025-01-28 | Wild | @ | Gulls | |||||||||||
2025-01-29 | Gulls | @ | Wild | |||||||||||
2025-02-01 | Gulls | @ | Monsters | |||||||||||
2025-02-02 | Gulls | @ | Roadrunners | |||||||||||
2025-02-03 | Reign | @ | Gulls | |||||||||||
2025-02-06 | Admirals | @ | Gulls | |||||||||||
2025-02-09 | Gulls | @ | Phantoms | |||||||||||
2025-02-12 | Gulls | @ | Bears | |||||||||||
2025-02-13 | Silver Knights | @ | Gulls | |||||||||||
2025-02-15 | Gulls | @ | Checkers | |||||||||||
2025-02-17 | Barracuda | @ | Gulls | |||||||||||
2025-02-20 | Gulls | @ | Barracuda | |||||||||||
2025-02-22 | Gulls | @ | Wranglers | |||||||||||
2025-02-24 | Admirals | @ | Gulls | |||||||||||
2025-02-26 | Gulls | @ | Reign | |||||||||||
2025-02-28 | Reign | @ | Gulls | |||||||||||
2025-03-02 | Gulls | @ | IceHogs | |||||||||||
2025-03-03 | Bears | @ | Gulls | |||||||||||
Trade Deadline --- Trades can’t be done after this day is simulated! | ||||||||||||||
2025-03-10 | Marlies | @ | Gulls | |||||||||||
2025-03-13 | Gulls | @ | Stars | |||||||||||
2025-03-16 | Penguins | @ | Gulls | |||||||||||
2025-03-20 | IceHogs | @ | Gulls | |||||||||||
2025-03-22 | Gulls | @ | IceHogs | |||||||||||
2025-03-25 | Roadrunners | @ | Gulls | |||||||||||
2025-03-26 | Gulls | @ | Senators | |||||||||||
2025-04-04 | Roadrunners | @ | Gulls |
Salary Cap | |||
---|---|---|---|
Players Total Salaries | Retained Salary | Total Cap Hit | Estimated Cap Space |
3,336,958$ | 0$ | 0$ | 75,000,000$ |
Arena | About us | |
---|---|---|
Name | ||
City | San Diego | |
Capacity | 3000 | |
Season Ticket Holders | 0% |
Arena Capacity - Ticket Price Attendance - % | |||||
---|---|---|---|---|---|
Arena Capacity | 2000 | 1000 | |||
Ticket Price | 35$ | 0$ | $ | $ | $ |
Attendance | 0 | 0 | |||
Attendance PCT | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% |
Income | |||||
---|---|---|---|---|---|
Home Games Left | Average Attendance - % | Average Income per Game | Year to Date Revenue | Arena Capacity | Team Popularity |
26 | 0 - 0.00% | 0$ | 0$ | 3000 | 100 |
Expenses | |||
---|---|---|---|
Players Total Salaries | Players Total Average Salaries | Coaches Salaries | Special Salary Cap Value |
3,336,958$ | 3,336,958$ | 0$ | 0$ |
Year To Date Expenses | Salary Cap Per Days | Salary Cap To Date | Luxury Taxe Total |
---|---|---|---|
978,173$ | 18,335$ | 851,811$ | 0$ |
Estimate | |||
---|---|---|---|
Estimated Season Revenue | Remaining Season Days | Expenses Per Days | Estimated Season Expenses |
0$ | 150 | 21,082$ | 2,867,152$ |
Team Total Estimate | |||
---|---|---|---|
Estimated Season Expenses | Estimated Season Salary Cap | Current Bank Account | Projected Bank Account |
2,867,152$ | 0$ | 0$ | 0$ |
Sponsors | |||
---|---|---|---|
TV Rights | Primary Sponsor | Secondary Sponsor | Secondary Sponsor |
Left Wing | Center | Right Wing |
---|---|---|
|
|
|
Defense #1 | Defense #2 | Goalie |
---|---|---|
|
|
|